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Abstract

In this paper we propose a weighted integrated conditional moment
(ICM) test of the validity of parametric specifications of conditional
distribution models for stationary time series, by extending the weighted
ICM test of Bierens (1984) for time series regression models to com-
plete parametric conditional distribution specifications.

∗Support for research within the Center for the Study of Auctions, Procurements, and
Competition Policy (CAPCP) at Penn State has been provided by a gift from the Human
Capital Foundation

1



1 Introduction
Time series models aim to represent conditional means, moments, and/or
conditional distributions relative to the entire past of the time series involved,
even if the model employs only a finite number of lagged conditioning vari-
ables. The past time series involved refers to all lagged dependent variables,
as for example is the case for ARMA models, and possibly all present and
past exogenous variables, as for example is the case for ARMAX models.
The consistency and asymptotic normality of parameter estimators of time
series models require various conditions on the model variables conditional
on their infinite past. For instance, the asymptotic normality and asymp-
totic efficiency of maximum likelihood estimators hinge on the condition that
the score vectors are martingale differences relative to their entire past. If
the model is only correctly specified conditional on a finite number of past
variables rather than on the whole past these results may not hold.
It is possible that the conditional mean or conditional distribution of a

time series is correctly specified conditional on a finite number of lagged
variables, but is incorrect when the infinite past is conditioned on. We will
give an example in section 2. Therefore, to test the validity of a time series
model specification consistently, we need to condition on the entire past of
the time series involved.
The tricky issue of how to condition on the whole past will be dealt with

along the approach in Bierens (1984), by conducting a sequence of ICM testsbBn,m, say, where m is the number of lagged conditioning variables involved
and n is the number of observations of the (vector) time series Yt involved.
Each ICM test bBn,m is conducted similar to Bierens and Wang (2008) for the
i.i.d. case, with (Y 0t−1, Y

0
t−2, ..., Y

0
t−m)

0 the vector of conditioning variables.
Thus, bBn,m is based on the integrated squared difference between the empir-
ical characteristic function of (Y 0t , Y

0
t−1, Y

0
t−2, ..., Y

0
t−m)

0 and the corresponding
empirical characteristic function implied by the estimated conditional distri-
bution model for Yt. Given an arbitrary α ∈ (0, 1) and a subsequence `n of
the sample size n, the actual weighted ICM (WICM) test statistic is

cWn =
`nX
m=1

αm bBn,m.
The asymptotic null distribution of this test is case dependent. Therefore,
critical values and/or p-values have to be derived via a bootstrap method.

2



Since this test is based on characteristic functions, it has the unique
advantage that it is applicable to any type of conditional distribution; con-
tinuous, discrete or mixed continuous-discrete (for example Tobit type mod-
els), as long as the time series involved are strictly stationary. With some
modifications this test can even handle singular conditional distributions,
for example stochastic dynamic general equilibrium macro-economic models.
This test is consistent against all stationary alternatives and has nontriv-
ial power against

√
n-local alternatives. To the best of our knowledge no

other consistent test for parametric conditional time series distributions has
been proposed yet in the literature, despite consistency claims made by some
authors.
Conditional characteristic functions often do not have a closed form ex-

pression and then have to be computed numerically. To avoid this computa-
tional burden, we propose a Weighted Simulated ICM (WSIMC) test where
the conditional characteristic function of the estimated model is replaced
with an simulated counterpart based on a single random drawing from this
conditional distribution. The WSICM test has an easy-to-compute closed-
form expression, and all theoretical properties of the exact WICM test carry
over.
This paper is organized as follows. Section 2 reviews the literature on time

series specification testing. In Section 3 we state the maintained hypothesis
on the data generating process and the parametric model. In Section 4
we discuss the identification of the alternative hypothesis via characteristic
functions. In Section 5 we derive the asymptotic properties of our test under
the null hypothesis. A simulated version of our test is proposed in Section
5. A limited Monte Carlo study will be presented in Section 6. Finally, in
Section 7 we will make some concluding remarks and propose directions for
further research.
As to notations, the indicator function will be denoted by I(.), the vector

norm ||x|| is the Euclidean norm if x ∈ Rd and ||x|| = √x0x if x ∈ Cd, where
the bar denotes the complex conjugate. In the case x = a+i.b ∈ C this norm
becomes the absolute value: |x| = √x.x = √a2 + b2. The matrix norm ||A|| is
the maximum absolute value of the elements involved, regardless whether the
elements of A are real or complex valued. Finally, we adopt the convention
that the derivative of a function to a row vector is a column vector of partial
derivatives, e.g., ∂ (x0Ax) /∂x0 = 2Ax, ∂ (x0Ax) /∂x = x0A.
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2 Literature Review
Recall that a test is called consistent if its power against any deviation of
the null hypothesis approaches one as the sample size goes to infinity. How-
ever, most test require some maintained hypotheses on the data, so that the
consistency concept is relative to these maintained hypotheses. For exam-
ple, a time series specification test may be consistent against all stationary
alternatives but not against nonstationary alternatives.
The first consistent test for the specification of functional form of cross-

section regression models was proposed by Bierens (1982), and later named by
Bierens and Ploberger (1997) the Integrated Conditional Moment (ICM) test.
The key idea of the ICM test is that the null hypothesis is transformed to a
testable sufficient and necessary equivalent hypothesis consisting of an infinite
number of orthogonality conditions formed by products of model errors and
special weight functions of the explanatory variables. The features of these
weight functions are characterized by Stinchcombe and White (1998). The
ICM test was generalized to time series regression models by Bierens (1984),
De Jong (1996) and Bierens and Ploberger (1997).
A necessary condition for the consistency of tests of time series hypotheses

is that the information set conditioned on contains the entire past of the time
series involved. In particular, for testing the functional form of time series
regression models this condition implies that the null hypothesis involved is
that the model errors are martingale differences with respect to the σ-algebra
generated by this information set. For example, consider the AR(1) model

Yt = α+ βYt−1 + Ut, |β| < 1. (1)

The condition for the validity of this model as the best one-step-ahead fore-
casting scheme for Yt is that Ut is a martingale difference process with re-
spect to the σ-algebra F t−1−∞ = σ

¡{Yt−j}∞j=1¢ generated by the information
set It−t = {Yt−j , j ≥ 1}, i.e.,

E
£
Ut|F t−1−∞

¤
= 0 a.s., (2)

and thus E
£
Yt|F t−1

−∞
¤
= α + βYt−1. Of course, the latter implies that also

E [Yt|Yt−1] = α+ βYt−1 a.s., but not the other way around. We will discuss
the literature using this AR(1) model as an example of the null hypothesis.
Most specification tests for regression-type time series models proposed

in the statistical and econometric literature, including Bierens and Ploberger
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(1997), only test implications of the martingale difference hypothesis rather
than this hypothesis itself. To the best of our knowledge the only two excep-
tions are the ICM tests of Bierens (1984) and De Jong (1996).
Bierens (1984) proposed to compute a sequence of ICM test statistics bBm

of the null hypotheses
E
£
Ut|F t−1

t−m
¤
= 0 a.s., (3)

where F t−1t−m = σ
¡{Yt−j}mj=1¢ , and then use P`n

m=1 ωm
bBm as the actual test

statistic, where ωm is a sequence of positive weights satisfying
P∞

m=1 ωm <∞
and `n is a subsequence of n.
De Jong (1996) has extended the approaches in Bierens’ (1982, 1990)

to an ICM test of the martingale difference hypothesis (2), as follows. He
identifies the null hypothesis (2) versus the alternative

Pr
¡
E
£
Ut|F t−1−∞

¤
= 0

¢
< 1 (4)

via the contents of a set S ⊂ R∞ of the type

S =

(
ξ = (ξ01, ξ

0
2, ξ

0
3, ....)

0 ∈ Ξ : E
"
Ut exp

Ã ∞X
j=1

ξ0jΨ(Yt−j)

!#
= 0

)
,

where Ξ is a compact metric space in R∞, and Ψ is a bounded one-to-
one mapping. In particular, de Jong specifies Ξ = ×∞j=1 [−c.j−2, c.j−2]k for
some constant c > 0, where k is the dimension of Ψ(Yt−j). Under the null
hypothesis (2), S = Ξ, whereas under the alternative, S is ”almost empty”.
Therefore, a consistent ICM test of the null hypothesis (2) can be based on
the integral Z

Ξ

Ã
1√
n

nX
t=2

bUt expÃ t−1X
j=1

ξ0jΦ(Yt−j)

!!2
dξ,

where the bUt’s are the regression residuals and n is the sample size.
Hong (1999) proposed a test for time series independence using a gener-

alized spectral density, where the autocorrelation function in the standard
spectral density is replaced by the difference between the joint characteristic
function and the product of two marginal characteristic functions. If there is
pairwise independence, then these differences are zero. Su and White (2007)
also use characteristic functions in testing serial independence. Hong and
Lee (2005) test pair-wise independence of the regression errors, using the
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approach in Hong (1999). However, independence of regression errors is too
strong a condition for model validity because the only requirement for cor-
rectness of conditional mean time series models is that the model errors are
martingale differences. Moreover, pairwise independence does not imply the
martingale difference hypothesis.
Escanciano and Velasco (2006) propose to test the martingale difference

hypothesis using the same pairwise implications as those in Hong (1999).
The generalized spectral density they use is based on the covariance be-
tween the regression errors Ut and particular functions of each of the lagged
conditioning variables Yt−m. Thus, these authors test the null hypothesis
supm≥1 |E[Ut|Yt−m]| = 0 a.s., rather than the martingale difference hypothe-
sis itself.
Dominguez and Lobato (2003) and Stute et al. (2006) propose tests

of the hypothesis (3) for fixed m based on moment conditions of the form

E
h
Ut
Qm
j=1 I(Yt−j ≤ yj)

i
= 0 for all conformable nonrandom vectors yj.

Before discussing the literature on testing the validity of parametric con-
ditional distribution specifications for time series data, let us explain first
what we mean by ”validity”, on the basis of the AR(1) model (1) augmented
with the assumption Ut|Zt−1 ∼ N [0, σ2] . The conditional distribution of this
model given Yt−1 takes the form

Gt−1(y|θ) = σ−1Φ ((y − α− βYt−1)/σ) (5)

θ = (α,β, σ)0,

where Φ is the c.d.f. of the standard normal distribution. This functional
specification is correct for any stationary Gaussian process Yt because then
(Yt, Yt−1)0 has a bivariate normal distribution. As is well-known, in this
case E [Yt|Yt−1] is linear in Yt−1, say E [Yt|Yt−1] = α + βYt−1, Ut = Yt −
E [Yt|Yt−1] ∼ N [0,σ2] for some σ, and Ut and Yt−1 are independent. However,
in general Pr

£
Yt ≤ y|F t−1−∞

¤ 6= Φ ((y − α− βYt−1−)/σ) . For example, let Yt
be the MA(1) process Yt = Vt − γVt−1 with |γ| < 1, and Vt Gaussian white
noise with variance σ2V . Then

Ft−1(y) = Pr
£
Yt ≤ y|F t−1−∞

¤
= σ−1V Φ

Ã
y −P∞

j=1 γ
jYt−j

σV

!
(6)

and Gt−1(y|θ) = Pr [Yt ≤ y|Yt−1].
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In testing dynamic distribution specifications, White (1987) used the fact
that if the distribution is correctly specified, then the negative of the Fisher
information matrix is equal to the variance of score function. Note that this
equality is just an implication of the null hypothesis. Hence, accepting this
equality does not necessarily mean that the null hypothesis is true, rendering
this test inconsistent.
Bai’s (2003) test of the validity of conditional distribution models for

time series is based on the well-known fact that for a univariate time series
process Yt with absolutely continuous conditional distribution of the type (6),
Ut = Ft−1 (Yt) is independent uniformly [0, 1] distributed. Therefore, given
the specification Gt−1(y|θ) of Ft−1(y), Bai proposes a Kolmogorov-type test
based on an empirical process of the form

bVn(u) = (1/√n) nX
t=1

h
I
³
Gt−1(Yt|bθ) ≤ u´− ui , u ∈ [0, 1],

where bθ is a (quasi-) maximum likelihood estimator. To get an asymptoti-
cally distribution free test, Bai uses the Khmaladze (1981) martingale trans-
formation, which yields a correction term bKn, say, such that under the null
hypothesis,

Vn(u) = bVn(u)− bKn = (1/
√
n)

nX
t=1

[I (Ut ≤ u)− u] + op (1) ,

where θ = p limn→∞ bθ. Under the null hypothesis, Vn converges weakly to a
standard Brownian bridge. However, in the case of the incorrect null model
(5) Ut = Gt−1(Yt|θ) is also uniformly [0,1] distributed, but no longer inde-
pendent. Then under some regularity conditions, Vn still converges weakly
to a limit process, although due to the dependence of Ut this limit process
is no longer a standard Brownian bridge. Thus, Bai’s test is not consistent.
One of the reasons for this inconsistency is that the independence condition
for the Ut’s is not part of the test, as only the uniformity condition is tested.
Another reason is given in Bierens and Wang (2008).
Bai and Chen (2007) have extended Bai’s (2003) test to vector time series

processes. Corradi and Swanson (2006) use the same uniform transformation
as in Bai (2003) to extend the conditional Kolmogorov test to time series.
But instead of using the Khmaladze (1981) martingale transformation to get
an asymptotically distribution free test, they used bootstrap critical values.
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Li and Tkacz (2006) propose a specification test based on a comparison
of a parametric conditional density with a nonparametrically estimated con-
ditional density function, weighted with a nonparametric kernel estimator of
the density of the (finite-dimensional) vector of conditioning variables. They
claim consistency of their test, even in the title of their paper.1

To the best of our knowledge there does not yet exist a test for the validity
of parametric distributions for time series data that is consistent against all
stationary alternatives. In this paper we will propose such a test.

3 Data Generating Process and Model
Throughout we will assume that

Assumption 1. The data generating process Yt is a strictly stationary
p-variate vector time series process defined on a common probability space
{Ω,F , P} , with a vanishing memory.

The latter concept is defined in Bierens (2004, Ch. 7) as follows.

Definition 1. Denote by F t−1
t−m the σ-algebra generated by Yt−1, Yt−2, ..., Yt−m:

F t−1t−m = σ (Yt−1, Yt−2, ..., Yt−m) , and let F t−1
−∞ = σ

¡∪∞m=1F t−1
t−m
¢
, which is the

σ-algebra generated by {Yt−j}∞j=1. Then F−∞ = ∩tF t−1
−∞ is the remote σ-

algebra involved. The time series process Yt has a vanishing memory if for
all sets A ∈ F−∞, either P (A) = 1 or P (A) = 0.

As is well known from Kolmogorov’s zero-one law, independent processes
have a vanishing memory in this sense, but this property carries over to
quite general stationary processes. See for example Bierens (2004, Ch. 7).
Moreover, under Assumption 1,

p lim
n→∞

1

n

nX
t=1

Yt = E [Y1] , provided that E [kY1k] <∞.

See Bierens (2004, Ch.7). Furthermore, under Assumption 1 the stochastic
properties of Yt are completely determined by the conditional distribution

1Other authors who makes unjustified consistency claims are Li (1999) and Chen and
Fan (1999).
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function
Ft−1(y) = E

£
I(Yt ≤ y)

¯̄F t−1−∞
¤
, y ∈ Rp

Let Gt−1(y|θ), θ ∈ Θ, be a family of parametric distributions of Yt con-
ditional on F t−1−∞, where Θ ⊂ Rk is a compact parameter space. Note that
the conditional distribution functions Gt−1(y|θ) may depend on the entire
sequence {Yt−j}∞j=1, as is the case for MA models, but for the time being
we will ignore this problem. Moreover, it is reasonable to assume that Θ is
chosen such that

Assumption 2. For all θ ∈ Θ the support of Gt−1(y|θ) is the same as the
support of Ft−1(y).

The null and alternative hypotheses involved are

H0: There exists an interior point θ0 ∈ Θ such that
Gt−1(y|θ0) = Ft−1(y) a.s. for all y ∈ Rp, (7)

H1: For all θ ∈ Θ there exists an y ∈ Rp such that
Pr [Gt−1(y|θ) = Ft−1(y)] < 1. (8)

respectively. It will be assumed that θ0 has been estimated by maximum
likelihood (ML), with ML estimator bθ, and that under H0 all the conditions
for consistency and asymptotic normality of bθ are satisfied. In particular
Assumption 3. Under the null hypothesis (7),

√
n
³bθ − θ0

´
= −Σ−1

Ã
1√
n

nX
t=1

Ut

!
+ op (1)

where Ut ∈ Rk is a martingale difference process with respect to. the filtra-
tion F t−1−∞, satisfying the conditions of the martingale difference central limit
theorem:2

1√
n

nX
t=1

Ut
d→ Nk [0,Σ] , det (Σ) > 0.

2See for example McLeish (1974).
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The Ut’s are of course the vectors of scores of the log-likelihood lnLn (θ),
with

Σ = − lim
n→∞

n−1E
h
∂2 lnLn (θ) /(∂θ∂θ

0)
¯̄
θ=θ0

i
= lim

n→∞
n−1

nX
t=1

E [UtU
0
t ] .

Under H1 the estimator bθ is a Quasi ML (QML) estimator. It is pretty
standard to set forth mild condition such that bθ converges in probability to
a point in Θ, namely the point

θ∗ = argmax
θ∈Θ

lim
n→∞

E [lnLn (θ) /n] .

Therefore, we assume that

Assumption 4. Under the alternative hypothesis (8), p limn→∞ bθ = θ∗.

The assumption that bθ is a (quasi-) ML estimator is not essential. Any
estimator satisfying Assumption 3 will do, for example, GMM estimators.

4 Identifying the Alternative Hypothesis Via
Empirical Characteristic Functions

The null and alternative hypotheses can, in theory, be identified via the
conditional characteristic functions of Gt−1(y|θ) and Ft−1(y):

ϕt−1 (τ |θ) =

Z
Rp
exp(i.τ 0y)dGt−1(y|θ), (9)

ψt−1 (τ) =

Z
Rp
exp(i.τ 0y)dFt−1(y) = E

£
exp(i.τ 0Yt)

¯̄F t−1−∞
¤

(10)

respectively. As is well known, H0 is true if and only if ϕt−1 (τ |θ0) ≡ ψt−1 (τ )
a.s. for all τ ∈ Rp, whereas under H1, infθ∈Θ supτ∈Rp |ϕt−1 (τ |θ)− ψt−1 (τ)| >
0 a.s. Moreover, if Yt is bounded then the latter is true if and only if in an
arbitrary open neighborhood N0 of the origin of Rp,

inf
θ∈Θ

sup
τ∈N0

|ϕt−1 (τ |θ)− ψt−1 (τ )| > 0 a.s.,
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due to the well-known fact that characteristic functions of bounded random
variables [or vectors] coincide everywhere if they coincide in an arbitrary
neighborhood of zero [or the zero vector]. Therefore, for the time being we
will assume that Yt is a bounded time series process, because then we know
where to look for possible discrepancies between ϕt−1 (τ |θ) and ψt−1 (τ ) .
However, although ϕt−1 (τ |θ) can be determined from the model distribu-

tionGt−1(y|θ), it is difficult if not impossible to estimate ψt−1 (τ) consistently.
The following lemma provides a solution to this problem.

Lemma 1. Let Assumption 1 hold, with Yt a bounded process: there exists
an M ∈ (0,∞) such that Pr [kYtk ≤M ] = 1. Denote

ϕm+1(τ |θ) = E

"Z
Rp
exp(i.τ 00y)dGt−1(y|θ) exp

Ã
i
mX
j=1

τ 0jYt−j

!#

ψm+1 (τ) = E

"
exp

Ã
i
mX
j=0

τ 0jYt−j

!#
τ = (τ 00, τ

0
1, ..., τ

0
m)

0 ∈ ×mj=0Υ
Sm+1 =

©
τ ∈ ×mj=0Υ :

¯̄
ϕm+1(τ |θ∗)− ψm+1 (τ)

¯̄
> 0

ª
where Υ ⊂ Rp is a hypercube centered around the origin of Rp and θ∗ is
defined by Assumption 4. Under H1, for all but a finite number of m’s,
Sm+1 has positive Lebesgue measure.

Proof : Appendix.
Of course, under H0 the Lebesgue measure of Sm+1 is zero.
This result suggests that a test for H0 can be based on the empirical

counterparts of ϕm+1(τ |θ) and ψm+1 (τ) :

bϕm+1(τ |θ) =
1

n

nX
t=1

Z
Rp
exp(i.τ 00y)dGt−1(y|θ) exp

Ã
i
mX
j=1

τ 0jYt−j

!

bψm+1 (τ) =
1

n

nX
t=1

exp

Ã
i
mX
j=0

τ 0jYt−j

!

In particular, if
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Assumption 5. For each τ0 ∈ Υ,
R
Rp exp(i.τ

0
0y)dGt−1(y|θ) is a.s. continuous

in θ ∈ Θ, where Υ and Θ are compact,

then by the uniform weak law of large numbers for strictly stationary time
series with vanishing memory (see Bierens 2004, Theorem 7.8(b), p. 189),

p lim
n→∞

sup
τ∈×mj=0Υ

¯̄̄bψm+1 (τ )− ψm+1 (τ)
¯̄̄
= 0

p lim
n→∞

sup
τ∈×mj=0Υ,θ∈Θ

¯̄bϕm+1(τ |θ)− ϕm+1(τ |θ)¯̄ = 0

hence by Assumption 4,3

p lim
n→∞

sup
τ∈×mj=0Υ

¯̄̄bϕm+1(τ |bθ)− ϕm+1(τ |θ∗)
¯̄̄
= 0

and thus

Lemma 2.Under Assumptions 1-5, the boundedness condition in Lemma 1
and H1,

p lim
n→∞

Z
×mj=0Υ

¯̄̄bϕm+1(τ |bθ)− bψm+1 (τ)¯̄̄2 dτ > 0
for all but a finite number of m’s.

5 The Weighted ICM Test and its Asymp-
totic Null Distribution

Consider the empirical process

bhn,m(τ) =
1√
n

nX
t=1

³
exp (i.τ 00Yt)− ϕt−1(τ0|bθ)´ expÃi mX

j=1

τ 0jYt−j

!
, (11)

τ = (τ 00, τ
0
1, ..., τ

0
m)

0 ∈ ×mj=0Υ,
3Together with the measurability conditions in Bierens (2004, Theorem 7.8(b), condi-

tion (a)), which we will not make explicit.
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where ϕt−1(τ0|bθ) is defined by (9) and Υ is a compact set in Rp.
For given m let

bBn,m = Z
×mj=0Υ

¯̄̄bhn,m(τ )¯̄̄2 dµm (τ)
where µm (τ ) is the uniform probability measure on ×mj=0Υ, i.e.

dµm(τ) =
dτR

×mj=0Υ dτ

5.1 Weak convergence

In this subsection it will be shown that underH0, and for fixedm, bhn,m ⇒ hm,
where hm(τ) is a zero-mean Gaussian process on ×mj=0Υ, so that by the
continuous mapping theorem,

bBn,m d→ Bm =

Z
×mj=0Υ

|hm (τ )|2 dµm(τ ). (12)

As to the general notion of weak convergence, consider a sequence of
random elements hn(β) of a metric space C (B) of functions on a compact
subset B of an Euclidean space. In our case C (B) is the metric space of
complex-valued continuous functions onB =×mj=0Υ, endowed with the ”sup”
metric. Weak convergence can be defined in various equivalent ways4, but
the one that delivers the result (12) directly is the following: hn converges
weakly to h, hn ⇒ h, if for all bounded continuous real functions f on C (B) ,

lim
n→∞

E [f (hn)] = E [f (h)] . (13)

For example, let for h ∈ C (B) , f (h) = γ
¡R
B
|h(β)|2dµ(β)¢ , where µ is a

probability measure on B and γ is an arbitrary bounded continuous real
function on R. Then (13) impliesZ

B

|hn(β)|2dµ(β) d→
Z
B

|h(β)|2dµ(β).

See, for example, Theorem 6.18 in Bierens (2004).

4See for example Billingsley (1968) or Van der Vaart and Wellner (1996).
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The necessary and sufficient conditions for weak convergence are that hn
is tight and the finite distributions of hn converge. The latter means that for
arbitrary β1,β2, ..., βk in B,

(hn(β1), hn(β2), ..., hn(βk))
d→ (h(β1), h(β2), ..., h(βk)) . (14)

The tightness concept is a generalization of the stochastic boundedness
concept for sequences of random variables: For each ε ∈ (0, 1) there exists
compact set K ⊂ C (B) such that infn≥1 Pr [hn ∈ K] > 1− ε.
According to Billingsley (1968, Theorem 8.2), the following two conditions

are sufficient for the tightness of hn:
(a) For each η > 0 and each β ∈ B there exists a δ > 0 such that

sup
n≥1

Pr [|hn(β)| > δ] ≤ η (15)

(b) For each η > 0 and δ > 0 there exists an ε > 0 such that

sup
n≥1

Pr

"
sup

||β1−β2||<ε
|hn(β1)− hn(β1)| ≥ δ

#
≤ η. (16)

Condition (a) is a pointwise stochastic boundedness condition, which
holds if for each β ∈ B, hn(β) converges in distribution, hence this con-
dition follows from the condition (14). Condition (b) is also known as the
stochastic equicontinuity condition, which is the difficult part of the tightness
proof.

5.2 Eliminating the ML Estimator

To prove bhn,m ⇒ hm we first need to get rid of the ML estimator bθ in the
expression (11), using Assumption 3, as follows. Write (11) asbhn,m(τ ) = bh1,n,m(τ)− bh2,n,m(τ |bθ),
where

bh1,n,m(τ ) =
1√
n

nX
t=1

(exp (i.τ 00Yt)− ϕt−1 (τ0|θ0)) ,

× exp
Ã
i
mX
j=1

τ 0jYt−j

!
(17)
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bh2,n,m(τ |bθ) =
1√
n

nX
t=1

³
ϕt−1

³
τ0|bθ´− ϕt−1 (τ0|θ0)

´
× exp

Ã
i
mX
j=1

τ 0jYt−j

!
(18)

Next, assume that

Assumption 6. Under H0 the conditional characteristic function ϕt−1 (τ |θ)
defined by (9) is a.s. twice continuously differentiable on an open neighbor-
hood Θ0 ⊂ Θ of θ0 with vector of first derivatives satisfying

E

∙
sup

τ0∈Υ,θ∈Θ0
|∂ϕt−1 (τ0|θ) /∂θj|

¸
< ∞,

E

∙
sup

τ0∈Υ,θ∈Θ0

¯̄
∂2ϕt−1 (τ0|θ) /(∂θj1∂θj2)

¯̄¸
< ∞,

for j, j1, j2 = 1, 2, ..., k.

Denote

∆ϕt−1 (τ |θ) = ∂ϕt−1 (τ |θ)
∂θ0

, ∆2ϕt−1 (τ |θ) = ∂2ϕt−1 (τ |θ)
∂θ∂θ0

.

It follows from Assumptions 3 and 6 and Taylor’s theorem that

bh2,n,m(τ |bθ) = √n³bθ − θ0

´0 1
n

nX
t=1

∆ϕt−1 (τ0|θ0) exp
Ã
i
mX
j=1

τ 0jYt−j

!

+
1

2

√
n
³bθ − θ0

´0 1
n

nX
t=1

Ã
Re

"
∆2ϕt−1

³
τ0|eθ1´ expÃi mX

j=1

τ 0jYt−j

!#
×
³bθ − θ0

´
+i.
1

2

√
n
³bθ − θ0

´0 1
n

nX
t=1

Im

"
∆2ϕt−1

³
τ0|eθ2´ expÃi mX

j=1

τ 0jYt−j

!#
×
³bθ − θ0

´
(19)
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where eθ1 and eθ2 are mean values satisfying °°°eθj − θ0

°°° ≤ °°°bθ − θ0

°°° , j = 1, 2.
Hence ¯̄̄̄

¯bh2,n,m(τ |bθ)−√n³bθ − θ0

´0 1
n

nX
t=1

∆ϕt−1 (τ0|θ0) exp
Ã
i
mX
j=1

τ 0jYt−j

!¯̄̄̄
¯

≤ 1

2
√
n

°°°√n³bθ − θ0
´°°°2 1

n

nX
t=1

sup
τ0∈Υ,θ∈Θ0

°°∆2ϕt−1 (τ0|θ)
°°

+Op
¡
1/
√
n
¢
= Op

¡
1/
√
n
¢

Note that the first Op term is due to

lim
n→∞

Pr
heθ1 ∈ Θ0

i
= 1, lim

n→∞
Pr
heθ2 ∈ Θ0

i
= 1

and the second Op term is due to the fact that by Assumptions 1 and 6 the
weak law of large numbers applies:

1

n

nX
t=1

sup
τ0∈Υ,θ∈Θ0

°°∆2ϕt−1 (τ0|θ)
°° p→ E

∙
sup

τ0∈Υ,θ∈Θ0

°°∆2ϕt−1 (τ0|θ)
°°¸ .

Moreover, using Theorem 7.8(b) in Bierens (2004) it can be shown that

1

n

nX
t=1

∆ϕt−1 (τ0|θ0) exp
Ã
i
mX
j=1

τ 0jYt−j

!
p→ bm(τ |θ) (20)

= E

"
∆ϕt−1 (τ0|θ) exp

Ã
i
mX
j=1

τ 0jYt−j

!#

uniformly in τ = (τ 00, τ
0
1, ..., τ

0
m)

0 ∈ ×mj=0Υ. Thus it follows from Assumption
3 that bh2,n,m(τ |bθ) = −bm(τ |θ0)0Σ−1Ã 1√

n

nX
t=1

Ut

!
+ op (1) (21)

where the op (1) term is uniform in τ ∈ ×mj=0Υ.
Combining the results (17) and (21), bhn,m(τ ) can be written as

bhn,m(τ) = ehn,m(τ ) + op (1)
16



where ehn,m(τ ) = 1√
n

nX
t=1

φm,t(τ) (22)

with

φm,t(τ) = (exp (i.τ 00Yt)− ϕt−1 (τ0|θ0)) exp
Ã
i

mX
j=1

τ 0jYt−j

!
+bm(τ |θ0)0Σ−1Ut. (23)

5.3 Tightness and Convergence Results

Note that pointwise in τ ∈ ×mj=0Υ, φm,t(τ) is a (complex-valued) martingale
difference process, i.e., φm,t(τ ) is measurable F t−∞ and E

£
φm,t(τ)|F t−1

−∞
¤
= 0

a.s., hence by the martingale difference central limit theorem (see McLeish
1974), ⎛⎝ Re

hehn,m(τ)i
Im
hehn,m(τ )i

⎞⎠ d→
µ
Re [hm(τ)]
Im [hm(τ)]

¶
for fixed m and n → ∞, where the latter is a bivariate zero-mean random
vector. The same result holds for bhn,m(τ). Similarly, it follows that
Lemma 3. Let m be fixed. Under H0 and Assumptions 1-6 the finite distri-
butions of bhn,m(τ) converge.
Because bm(τ |θ0) is uniformly continuous on ×mj=0Υ, it follows straight-

forwardly from (21) that bh2,n,m(τ |bθ) is tight. Therefore, the tightness ofbhn,m(τ) follows from the following lemma.

Lemma 4. Let Yt be bounded and m be fixed. Under H0 and Assumptions
1-6 the process bh1,n,m(τ) is tight.
Proof : Appendix.
Consequently:

Theorem 1. Let Yt be bounded and m be fixed. Under H0 and Assump-
tions 1-6, bhn,m ⇒ hm on ×mj=0Υ, where hm is a complex-valued zero-mean

17



Gaussian process with covariance function

Γm (τ, ς) = E
h
φm,t(τ)φm,t(ς)

i
, (24)

where φm,t is defined by (23).5 Thus by the continuous mapping theorem,

bBn,m = Z
×mj=0Υ

¯̄̄bhn,m(τ)¯̄̄2 dµm (τ) d→ Bm =

Z
×mj=0Υ

|hm (τ )|2 dµm(τ )

for each non-negative integer m, whereas under H1, p limn→∞ bBn,m/n > 0
for all but a finite number of m’s.

5.4 Weighted ICM Test

The weighted ICM test statistic takes the form

cWn =
`nX
m=1

αm bBn,m
where α ∈ (0, 1) is arbitrary, and so is the subsequence `n of n as long as
limn→∞ `n = ∞. To prove that under H0 and the conditions of Theorem 1,cWn

d→P∞
m=1 α

mBm, we need the following result.

Lemma 5. Under H0 and Assumptions 1-6, supm≥1E [Bm] < ∞ and
supm≥1 bBn,m = Op (1) .
Proof : Appendix
Combining this result with the results in Theorem 1 it follows that

Theorem 2. Choose a constant α ∈ (0, 1) and a subsequence `n of n. Under
the conditions of Theorem 1, cWn =

P`n
m=1 α

m bBn,m d→ P∞
m=1 α

mBm = W if
H0 is true, whereas p limn→∞cWn/n > 0 if H1 is true.

Proof : Appendix

5The bar in (24) denotes the complex conjugate of φm,t.

18



6 The Weighted Simulated ICM Test
The theoretical conditional characteristic function poses a computational
challenge, because often conditional distributions have no closed-form ex-
pression for their characteristic functions. To cope with this problem, we
propose a Weighted Simulated Integrated Conditional Moment (WSICM)
test, similar to the i.i.d. case considered in Bierens and Wang (2008), as fol-
lows. The idea is to replace the estimated conditional characteristic function
ϕt−1(τ |bθ) in the empirical process bhm(τ ) defined by (11) with exp³i.τ 0eYt´ ,
where Ỹt is a random drawing from the estimated conditional null distribu-
tion Gt−1(y|bθ). Note that Ỹt has to be drawn from Gt−1(y|bθ) conditional on
the actual past data.
The process (11) now becomes

bhS,n,m(τ ) = 1√
n

nX
t=1

³
exp (i.τ 00Yt))− exp

³
i.τ 00eYt´´ exp

Ã
i
mX
j=1

τ 0jYt−j

!
(25)

Note that bhS,n,m(τ) = bhn,m(τ)− ehS,n,m(τ ),
where bhn,m(τ) is defined by (11) and
ehS,n,m(τ ) = 1√

n

nX
t=1

³
exp

³
i.τ 00eYt´− ϕt−1

³
τ0|bθ´´ expÃi mX

j=1

τ 0jYt−j

!
(26)

Similar to the proof of Lemma 4 it can be shown that conditional on all
past and future data, i.e., conditional on the σ-algebra FD = σ

¡∪tF t
−∞
¢
, the

process ehS,n,m is tight and is therefore tight unconditionally as well. Conse-
quently, ehS,n,m converges weakly to a zero mean Gaussian process h∗S,m, say.
Moreover, denoting

φS,m,t(τ ) = (exp (i.τ
0Yt)− ϕt−1 (τ |θ0)) exp

Ã
i
mX
j=1

τ 0jYt−j

!
(27)

which is similar to (23) but without the term bm(τ |θ0)0Σ−1Ut, it is obvious
that (1/

√
n)
Pn

t=1 φS,m,t(τ)⇒ h∗S,m(τ) as well, hence the covariance function
of h∗S,m is

ΓS,m (τ, ς) = E
h
φS,m,t(τ )φS,m,t(ς)

i
(28)
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Furthermore, it is not hard to verify that h∗S,m is independent of the Gaussian
process hm in Theorem 1. Therefore, the following results hold.

Theorem 3. Under H0 and the conditions of Theorem 1, bhS,n,m ⇒ hS,m,

where bhS,n,m is the empirical process (25) and hS,m is a complex-valued
zero-mean Gaussian process on ×mj=0Υ with covariance function Γm(τ, ς) +
ΓS,m(τ, ς), with Γm and ΓS,m defined by (24) and (28), respectively. Thus by
the continuous mapping theorem,

bBS,n,m =

Z
×mj=0Υ

¯̄̄bhS,n,m(τ )¯̄̄2 dµm (τ ) (29)

d→ BS,m =

Z
×mj=0Υ

|hS,m(τ)|2 dµm (τ )

for fixed non-negative integers m, whereas under H1, p limn→∞ bBS,n,m/n > 0
for all but a finite number of m’s.

It is also easy to verify that Lemma 5 carries over. Consequently, Theorem
2 carries over to the SWICM test.

Theorem 4. Choose a constant α ∈ (0, 1) and a subsequence `n of n. Under
the conditions of Theorem 1,

cWS,n =
`nX
m=1

αm bBS,n,m d→
∞X
m=1

αmBS,m =WS (30)

if H0 is true, whereas p limn→∞cWS,n/n > 0 if H1 is true.

7 Standardization and Bounded Tranforma-
tion

The assumption that the process Yt is bounded is not restrctive because with-
out loss of genality we may replace Yt and eYt by bounded one-to-one trans-
formations Φ (Yt) and Φ(eYt), respectively. However, as argued in Bierens and
Wang (2008) for the cross-section case, it is important for the preservation
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of the finite sample power of the WSICM test to standardize the variables
involved before transforming them by a bounded one-to-one mapping Φ, as
otherwise some or all the components of Φ (Yt) and/or Φ(eYt) may become
approximately constants. In particular, Bierens and Wang (2008) propose to
standardize each component Yj,t of Yt by Y j,t = σ−1j,n (Yj,t − µn,j) , where for
example µj,n is the sample mean of the Yj,t’s and σj,n is the corresponding
sample standard error, and then taking the the arctan (.) transformation.
An alternative way to choose the location and scale parameters µj,n and

σj,n, respectively, proposed by Bierens and Wang (2008) is to base them on
empirical quantiles of the Yj,t’s such that, for example, (1/n)

Pn
t=1 I(|Y j,t| ≤

1) ≈ 0.9. The reason for the latter is that the arctan(.) function has still
substantial variation on the interval [−1, 1]: min−1≤x≤1 d arctan(x)/dx = 1/2.
However, adopting the same standardization procedures in the time series

case would create additional dependence between Φ (Yt) and Φ (Yt−m) due
to the common location and scale parameters. To avoid this problem, we
propose to standardize each component Yj,t by

Y j,t =
Yj,t − µj,t−1

σj,t−1
, σj,t−1 > 0 for t ≥ 1

for example, where µj,t−1 and σj,t−1 are functions of Yj,1, ..., Yj,t−1 only, and
then taking the arctan transformation:

Φ (Yt) = Ψp

¡
Σ−1Y,t−1 (Yt − µY,t−1)

¢
(31)

Φ(eYt) = Ψp

³
Σ−1Y,t−1

³eYt − µY,t−1´´ (32)

where

Ψp
¡
(x1, .., xp)

0¢ = (arctan(x1), ..., arctan(xp))
0

µY,t−1 = (µ1,t−1, ..., µp,t−1)
0 ,

ΣY,t−1 = diag (σ1,t−1), ..., σp,t−1))

For example, choose

µj,t−1 =
1

t− 1
t−1X
m=1

Yj,m, σj,t−1 = 1 +

vuut 1

t− 1
t−1X
m=1

Y 2j,m − µ2j,t−1
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for t ≥ 2 and µj,t−1 = 0, σj,t−1 = 1 for t ≤ 1. Alternatively, as motivated by
Bierens and Wang (2008), choose

µj,t−1 =
1

2
(Qj,t−1 (0.95) +Qj,t−1(0.05)) ,

σj,t−1 =
1

2
(Qj,t−1 (0.95)−Qj,t−1(0.05)) ,

for t ≥ 2 and µj,t−1 = 0, σj,t−1 = 1 for t ≤ 1, where
Qj,t−1 (α) = arg max

1
t−1

Pt−1
m=1 I(Yj,m≤x)≤α

x

is the α× 100% sample quantile of Yj,1, ...., Yj,t−1.
Denoting Y t = Σ−1Y,t−1 (Yt − µY,t−1) it follows trivially that

Pr
£
Y t ≤ y|F t−1−∞

¤
= Pr

£
Yt ≤ ΣY,t−1y + µY,t−1|F t−1

−∞
¤

= Ft−1(ΣY,t−1y + µY,t−1) = F t−1(y),

say, with corresponding specification

Gt−1(y|θ) = Gt−1(ΣY,t−1y + µY,t−1|θ)

Therefore, all our asymptotic results carry over if we replace Yt and eYt by
(31) and (32), respectively.

8 Monte Carlo Simulations
To check the small sample performance of the WSICM test, we have gen-
erated Gaussian MA(1) processes Yt = Ut − θUt−1 for θ = 0, 0.3, 0.6, 0.9,
respectively. For each of these processes we test the null hypothesis that Yt
is a Gaussian AR(p) process, for p = 0, 1, 2, 3, and sample sizes n = 200, 600.6

The parameter α in (30) has been chosen α = 0.9, and the subsequence
`n in (30) has been chosen `n =

£
n1/3

¤
,7 so that `n = 6 for n = 200 and

`n = 8 for n = 600. The integration range Υ of the SICM statistic bBS,n,m in
(29) has been chosen Υ = [−5, 5] . Finally, the bootstrap sample size is 500,
the significance level is 10% and the number of replications is 100.

6Corresponding to 50 years of quarterly and monthly data, respectively.
7The notation [x] indicates the largest integer ≤ x.
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Admittedly, the number of replications is rather small, but that is due to
computational constraints. In particular, even with only 100 replications it
took about one hour and 15 minutes on a PC to compute a single entry in
Table 1 for n = 200, and eight hours for n = 600.

Table 1: Simulation results
n = 200

θ Â p 0 1 2 3
0.0 13 8 15 11
0.3 37 12 12 10
0.6 90 16 10 7
0.9 97 31 11 11

n = 600
θ Â p 0 1 2 3
0.0 16 8 12 11
0.3 87 12 10 10
0.6 100 49 19 9
0.9 100 78 14 12

As expected, the power results improve with the length of the time series,
and the power decreases with θ. However, it is puzzling that the test has no
power for p > 1 in the case θ = 0.9. To partly explain this, note that for
each lag length m the SICM test bBS,n,m in (29) compares the AR(p) null
distribution with the linear projection of Yt on Yt−1, ..., Yt−m, which is an
AR(m) model,

Yt =
mX
j=1

βj,mYt−j + Vm,t, Vm,t ∼ N
£
0, σ2m

¤
, (33)

where due the Gaussianity of Yt the residual Vm,t is independent of Yt−1, ..., Yt−m.
The residual process Vm,t is not independent, though. The AR(p) null model
is of course also the linear projection of Yt on Yt−1, ..., Yt−p,

Yt =

pX
j=1

βj,pYt−j + Vp,t, Vp,t ∼ N
£
0,σ2p

¤
. (34)

For m ≤ p the test bBS,n,m effectively compares an AR(m) model with itself
because then by the law of iterated expectations,

E [E [exp (i.τYt)| Yt−1, ..., Yt−p]|Yt−1, ..., Yt−m]
= E [exp (i.τYt)|Yt−1, ..., Yt−m]

Thus, only the terms αm bBS,n,m for m > p in the WSICM statistic cWS,n =P`n
m=1 α

m bBS,n,m contribute to the power of the test. Still, why they don’t for
p > 1 in the cases under review is an open question.
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On the other hand, Bai’s (2003) test will have no power in either of these
cases, because (34) implies that the actual conditional distribution of Yt given
Yt−1, ..., Yt−p is

F (y|Yt−1, ..., Yt−p) = Pr [Yt ≤ y|Yt−1, ..., Yt−p]

=

exp

µ
− 1
2σ2p

³
y −Pp

j=1 βj,pYt−j
´2¶

σp
√
2π

so that eUt = F (Yt|Yt−1, ..., Yt−p) is uniformly [0, 1] distributed, although
serially dependent. Bai’s test only tests the uniformity hypothesis. If the
AR(p) null model were correct, the eUt’s would also be independent, but
Bai’s test does not check for that.

9 Conclusions
This paper extends Bierens (1984) weighted ICM test for functional forms to
the test for the validity of parametric specifications of conditional distribu-
tions. The test is done by conducting a sequence of simulated ICM tests with
an increasing number of lagged conditioning variables. The test statistic is
a weighted sum of these simulated ICM test statistics. Preliminary simu-
lations for Gaussian MA(1) data generating processes and Gaussian AR(p)
null models show that in principle this test works, but that the small sample
power deteriorates for p ≥ 2.Why this is the case is yet unknown. Our con-
jecture is that this problem is typical for Gaussian processes. These issues
will be addressed in future research.

10 Appendix

10.1 Proof of Lemma 1

It is well-known [see for example Theorem 3.12 in Bierens (2004)] that point-
wise in τ0,

lim
m→∞

E
£
ϕt−1 (τ0|θ∗)− ψt−1 (τ0) |F t−1

t−m
¤
= E

£
ϕt−1 (τ0|θ∗)− ψt−1 (τ0) |F t−1−∞

¤
= ϕt−1 (τ0|θ∗)− ψt−1 (τ0) a.s. (35)
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Let Yt be a univariate time series. Without loss of generality we may
interpret ϕt−1 (τ0|θ∗) as

ϕt−1 (τ0|θ∗) = E
h
exp

³
i.τ0eYt´¯̄̄F t−1−∞

i
where eYt is a bounded time series proces satisfying

Gt−1(y|θ∗) = E
h
I(eYt ≤ y)|F t−1−∞

i
.

Then

E
£
ϕt−1 (τ0|θ∗)− ψt−1 (τ0) |F t−1t−m

¤
=

∞X
j=0

(i.τ0)
j

j!
E
h eY jt − Y jt ¯̄̄F t−1t−m

i
,

ϕt−1 (τ0|θ∗)− ψt−1 (τ0) =
∞X
j=0

(i.τ0)
j

j!
E
h eY jt − Y jt ¯̄̄F t−1−∞

i
Clearly, under H1,

Pr
³
E
h eY j0t − Y j0t ¯̄̄F t−1

−∞
i
= 0

´
< 1

for at least one j0 > 0. For such a j,

lim
m→∞

E
h eY jt − Y jt ¯̄̄F t−1

t−m
i
= E

h eY jt − Y jt ¯̄̄F t−1−∞
i

which implies that for all but a finite number of m’s,

Pr
³
E
h eY j0t − Y j0t ¯̄̄F t−1t−m

i
= 0

´
< 1

a.s. It follows now from Theorem 1 in Bierens and Ploberger (1997) that the
set (

(τ1, ..., τm)
0 ∈ [−c, c]m : E

"³eY j0t − Y j0t ´ exp
Ã
i.

mX
j=1

τ 0jYt−j

!#
= 0

)
has zero Lebesgue measure and is nowhere dense in [−c, c]m . Consequently,
for each of these m’s there exists a τ0 such that the set½

(τ1, ..., τm)
0 ∈ [−c, c]m :

E

"³
exp

³
i.τ0eYt´− exp (i.τ0Yt)´ expÃi. mX

j=1

τ 0jYt−j

!#
= 0

)
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has zero Lebesgue measure and is nowhere dense in [−c, c]m . The result of
Lemma 1 follows now straightforwardly, using the continuity of characteristic
functions.

10.2 Proof of Lemma 4

We will prove Lemma 4 for the case Yt ∈ [−M,M ] a.s. and Υ = [−c, c] where
c > 1, as follows. Write (17) as

bh1,n,m(τ) = 1√
n

nX
t=1

(exp (i.τ0Yt)−Et−1 [exp (i.τ0Yt)]) exp
Ã
i
mX
j=1

τjYt−j

!

where Et−1 [·] denotes E
£·|F t−1

−∞
¤
. Using the series expansion of the complex

exp function, we can write

bh1,n,m(τ) =
∞X
k=0

ik

k!
τk0

1√
n

nX
t=1

¡
Y kt −Et−1

£
Y kt
¤¢ mY

j=1

Ã ∞X
s=0

is

s!
τ sj Y

s
t−j

!

=
∞X
k0=0

∞X
k1=0

· · ·
∞X

km=0

i
Pm
j=0 kjQm
j=0 kj !

mY
j=0

τ
kj
j

× 1√
n

nX
t=1

¡
Y k0t −Et−1

£
Y k0t

¤¢ mY
j=1

Y
kj
t−j (36)

Moreover, for τ, ς ∈ [−c, c]m+1 and ||τ − ς|| ≤ ε < 1 we have the inequality¯̄̄̄
¯
mY
j=0

τ
kj
j −

mY
j=0

ς
kj
j

¯̄̄̄
¯ ≤ ¯̄

τk00 − ςk00
¯̄
c
Pm
j=1 kk + ck0

¯̄̄̄
¯
mY
j=1

τ
kj
j −

mY
j=1

ς
kj
j

¯̄̄̄
¯

≤
k0X
j=1

µ
k0
j

¶
|τ0 − ς0|j c

Pm
j=0 kk + ck0

¯̄̄̄
¯
mY
j=1

τ
kj
j −

mY
j=1

ς
kj
j

¯̄̄̄
¯

≤ ε
k0X
j=1

µ
k0
j

¶
c
Pm
j=0 kk + ck0

¯̄̄̄
¯
mY
j=1

τ
kj
j −

mY
j=1

ς
kj
j

¯̄̄̄
¯

≤ ε.2k0c
Pm
j=0 kk + ck0

¯̄̄̄
¯
mY
j=1

τ
kj
j −

mY
j=1

ς
kj
j

¯̄̄̄
¯
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hence by induction¯̄̄̄
¯
mY
j=0

τ
kj
j −

mY
j=0

ς
kj
j

¯̄̄̄
¯ ≤ ε.c

Pm
j=0 kk

mX
j=0

2kj < ε.m (2c)
Pm
j=0 kk

Consequently, for ε < 1,

E

"
sup

||τ−ς||≤ε

¯̄̄bh1,n,m(τ)− bh1,n,m(ς)¯̄̄#

≤ ε.m
∞X
k0=0

∞X
k1=0

· · ·
∞X

km=0

1Qm
j=0 kj !

(2c)
Pm
j=0 kk

×

vuuutE
⎡⎣Ã 1√

n

nX
t=1

¡
Y k0t − Et−1

£
Y k0t

¤¢ mY
j=1

Y
kj
t−j

!2⎤⎦
≤ ε.m

√
2

∞X
k0=0

∞X
k1=0

· · ·
∞X

km=0

1Qm
j=0 kj!

(2c)
Pm
j=0 kk

mY
j=0

Mkj

= ε.m
√
2 exp (2(m+ 1)cM)

Thus for fixed m the stochastic equicontinuity condition (16) holds, so thatbh1,n,m is tight. The generalization of this results to higher dimensions and
more general spaces is straightforward.

10.3 Proof of Lemma 5

To prove of supm≥1E [Bm] <∞, note that

E [Bm] =

Z
×mj=0Υ

Γm (τ, τ) dµm (τ ) =

Z
×mj=0Υ

E
£|φm,t(τ )|2¤ dµm (τ )

where Γm is the covariance function (24). Moreover, observe from (23) that
φm,t(τ ) can be written as

φm,t(τ )

= exp

Ã
i
mX
j=0

τ 0jYt−j

!
−Et−1

"
exp

Ã
i
mX
j=0

τ 0jYt−j

!#
+ bm(τ |θ0)0Σ−1Ut.

27



= cos

Ã
mX
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τ 0jYt−j

!
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"
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Ã
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j=0
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!
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!

where again Et−1 [·] denotes E
£·|F t−1

−∞
¤
. Moreover, observe from (20) and

Assumption 6 that

sup
τ∈×mj=0Υ

kbm(τ |θ0)k0 ≤ sup
τ0∈Υ

E [k∆ϕt−1 (τ0|θ0)k]
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It follows now easily from Assumption 3 that

E [Bm] ≤ 8 + 2
µ
E

∙
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τ0∈Υ

k∆ϕt−1 (τ0|θ0)k
¸¶2

trace
¡
Σ−1

¢
<∞.
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Next, observe from (21) that

E
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and from (19) that¯̄̄bh2,n,m(τ |bθ)¯̄̄
≤
°°°√n³bθ − θ0

´°°° . 1
n

nX
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sup
τ0∈Υ

k∆ϕt−1 (τ0|θ0)k

+
1

2
√
n
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´°°°2 1

n

nX
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°°°∆2ϕt−1
³
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´°°°2 1

n
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³
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= Op (1)

uniformly in τ and m. Hence

bBn,m =

Z
×mj=0Υ

¯̄̄bhn,m(τ)¯̄̄2 dµm (τ )
≤ 2

Z
×mj=0Υ

¯̄̄bh1,n,m(τ )¯̄̄2 dµm (τ ) + 2Z
×mj=0Υ

¯̄̄bh2,n,m(τ |bθ)¯̄̄2 dµm (τ)
= Op (1)

uniformly in m.

10.4 Proof of Theorem 2

It is easy to verify that under the conditions of Theorem 1, for fixed m,³bhn,1,bhn,2, ...,bhn,m´⇒ (h1, h2, ..., hm)
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hence for any positive integer K,
KX
m=1

αm bBn,m d→
KX
m=1

αmBm

Moreover, it is obvious from Lemma 5 that for K →∞,
KX
m=1

αmBm
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∞X
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αmBm = W,

say. Due to Lemma 5 we can choose K so large that for abitrary small ε > 0,
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¸
< ε
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" ∞X
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Next, let x be a continuity point of the distribution of W and observe
that for `n > K

I
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Ã
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Taking expectation and then letting n→∞ yield

lim sup
n→∞

Pr
hcWn ≤ x

i
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"
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αmBm ≤ x
#
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Pr
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Next, letting K →∞ yields

lim sup
n→∞

Pr
hcWn ≤ x

i
≤ Pr [W ≤ x]

lim inf
n→∞

Pr
hcWn ≤ x

i
≥ Pr [W ≤ x− ε]− ε

Finally, letting ε ↓ 0 yields
lim
n→∞

Pr
hcWn ≤ x

i
= Pr [W ≤ x] .
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